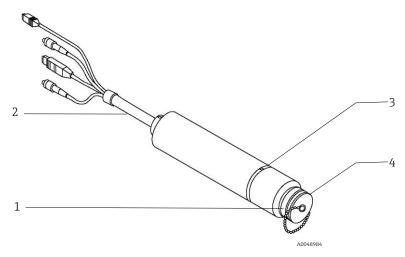
Products

Services

Technical Information Rxn-20 Raman spectroscopic probe

Table of Contents


Function and system design	3
Fields of application	3
Laser safety interlock	3
Rxn-20 probe	3
Fiber optic bundle	4
Rxn-20 probe accessories	4
Process and probe compatibility	5
Installation	5
Specifications	6

General specifications	6
Dimensions	7
MPE: ocular exposure	8
MPE: skin exposure	8
Nominal hazard zone	9
Certificates and approvals	10
Certificates and approvals	
••	10
Hazardous area approvals	10 11

Function and system design

Fields of application	The Rxn-20 Raman spectroscopic probe is intended for the measurement of solids and semi-solids in a laboratory or process development or manufacturing setting.		
	Recommended applications include:		
	Polymers: extruded pellet quality, crystallinity, density, raw materials		
	 Pharmaceutical: crystallinity, polymorphism, granulation, blend uniformity, content uniformity, coating, tableting 		
	Chemicals: final product quality, blend impurities, crystallinity, raw materials		
	 Food and beverage: quality of dairy solids, meat and fish composition 		
	Use of the device for any purpose other than that described, poses a threat to the safety of people and of the entire measuring system and invalidates any warranty.		
Laser safety interlock	The Rxn-20 probe, as installed, forms part of the interlock circuit. If the fiber cable is severed, the laser will turn off within milliseconds of the breakage.		
	NOTICE		
	Handle probes and cables with care.		
	Fiber cables should NOT be kinked and should be routed to maintain the minimum bend radius of 75 mm (2.96 in.).		
	 Permanent damage may result if cables are not routed appropriately. 		
	The probe contains an intrinsically safe level of electrical potential. If the probe is installed in an enclosure, an optional interlock switch may be fitted to the enclosure lid such that opening the enclosure will operate the laser interlock and shut the laser down within milliseconds of the enclosure being opened.		

Rxn-20 probe

Fiaure	1.	Rxn-20	probe
riguic	. .	10010	probe

#	Name	Description
1	Removable non-contact optic	Lens adapters used to modify spot size to one of the following: 1, 1.5, 3, 4.7 and 6 mm (0.04, 0.06, 0.12, 0.19 and 0.24 in.).
2	Fiber optic cable	Connects the probe to the Raman Rxn analyzer. Standard fiber cable lengths are 3, 10 or 15 m (9.84, 32.81, or 49.21 ft.). See Figure 2 for fiber optic bundle details.
3	Laser emission indicator	When there is potential for the laser to be energized, the indicator light is illuminated.
4	Beam block	Threaded cap attached to the Rxn-20 probe to prevent inadvertent laser scatter. Attached and unused probes should be capped.

Table 1. Rxn-20 probe parts

Fiber optic bundle

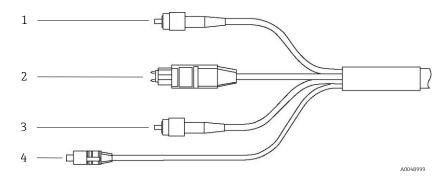


Figure 2. Rxn-20 probe fiber optic bundle

#	Name	Description
1	Excitation fiber	Fiber channel (FC) type fiber that provides fiber optic laser radiation output
2	Collection fiber	Mechanical transfer (MT) type fiber for Raman scatter collection
3	Calibration fiber	FC type fiber that provides fiber optic auto-calibration source output
4	Laser interlock connector	Electrical interlock loop connector; in case of fiber breakage, laser will turn OFF

Table 2. Rxn-20 probe fiber optic bundle

Rxn-20 probe accessories

The probe is compatible with the following accessories to meet the requirements of different applications.

A	ccessories	Materials of Construction	Diameter	Available Spot Sizes
Lens adapters	A0048985	316 stainless steel, PTFE adhesive: ISO 10993 compliant fused silica glass	38.1 mm (1.50 in.)	1 mm (0.04 in.)* 1.5 mm (0.06 in.)* 3 mm (0.12 in.) 4.7 mm (0.19 in.) 6 mm (0.24 in.)
Lens tubes: non-purged	A0048988	Aluminum alloy 6061-T651, anodized black	31.8 mm (1.25 in.)	3 mm (0.12 in.) 4.7 mm (0.19 in.) 6 mm (0.24 in.)
Lens tubes: purgeable	A0048991	316 stainless steel with 303 stainless barbed nipple	25.4 mm (1.00 in.)	3 mm (0.12 in.) 4.7 mm (0.19 in.) 6 mm (0.24 in.)
Immersion optics	A0048994	316 stainless steel, Kalrez, PTFE, sapphire	25.4 mm (1.00 in.)	3 mm (0.12 in.) 6 mm (0.24 in.)

*Compatible with small sample chamber using 3 mm (0.12 in.) lens tube mounted between the probe body and lens adapter

Table 3. Accessories for the Rxn-20 probe

Process and probe compatibility	Prior to installation, the user must check that the probe pressure and temperature ratings, as well as the materials from which the probe is made, are compatible with the process into
	which it is being inserted.

The probe should be installed using sealing techniques (e.g., flanges, compression fittings) appropriate and typical for the vessel or piping.

WARNING

If the probe will be installed in a high temperature or pressure process, additional safety precautions must be taken to avoid equipment damage or safety hazards.

A blow-out protection device is highly recommended in accordance with local safety standards.

It is the responsibility of the user to determine if any blow-out protection devices are required and ensure they are attached to the probe during installation.

Installation

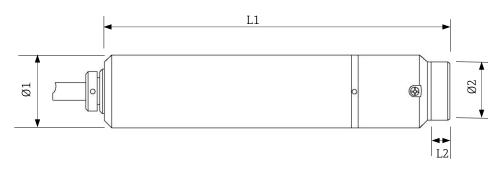
Prior to installation in the process, verify that the amount of laser power out of each probe is no more than the amount specified in the Hazardous Area Equipment Assessment (4002266) or equivalent.

Standard eye and skin safety precautions for Class 3B laser products (as per EN-60825/IEC 60825-14) should be observed as described below.

	tandard precautions for laser products should be observed.		
	 Probes should always be capped and/or pointed away from people toward a diffuse target if not installed in a sample chamber. 		
	If stray light is allowed to enter an unused probe, it will interfere with data collected from a used probe and may cause calibration failure or measurement errors.		
	 Unused probes should ALWAYS be capped to prevent stray light from entering the probe. 		
NOTICE	Take care to install the probe such that it is positioned to measure the sample or region of interest.		

Item		Description	
		< 499 mW 785 nm	
			Sample interface
	pressure	ambient	
	relative humidity	20 to 80 %, non-condensing	
Materials of	probe body	316L stainless steel	
construction	window	optical-grade materials	
	fiber optic cable	design: PVC jacketed, proprietary construction connections: FC, MT, and electrical	
Probe weight		approximately 2 lbs. (with cable)	
Probe length, inclu bend radius	ıding fiber cable	312 mm (12.29 in.)	
Fiber optic cable specifications	length	3, 10, or 15 m standard (9.84, 32.81, or 49.21 ft.) Custom lengths are available	
	minimum bend radius	75 mm (2.96 in.)	
	temperature	-40 to 70 °C (-40 to 158 °F)	
Nominal beam	standard	6 mm (0.24 in.)	
diameter at focal position	optional	4.7, 3, or 1 mm (0.19, 0.12, or 0.04 in.)	

Specifications


General specifications

General specifications for the Rxn-20 probe are listed below.

Table 4. General specifications

Dimensions

The dimensions for the Rxn-20 probe and lens adapter are shown below.

A0049001

Figure 3. Rxn-20 probe and lens adapter dimen	ninna
r_{1}	SIULIS

Dimension	Measurement	Description
L1	224.33 mm (8.83 in.)	Length of probe body with lens adapter
L2	14.6 mm (0.58 in.)	Length of 6 mm (0.24 in.) spot size lens adapter
Ø1	48 mm (1.89 in.)	Diameter of probe
Ø2	38.1 mm (1.50 in.)	Diameter of lens adapters

Table 5. Rxn-20 probe and lens adapter dimensions

MPE: ocular exposure

The ANSI Z136.1 standard provides means to perform maximum permissible exposure (MPE) for ocular exposure. Please refer to the standard to calculate the relevant MPE levels for the case of laser exposure from the Rxn-20 probe and from the unlikely occurance of laser exposure from a broken optical fiber.

A correction factor (C_A) may also be required and can be determined below.

Wavelength λ (nm)	Correction factor C _A
400 to 700	1
700 to 1050	10 ^{0.002} (²⁻⁷⁰⁰)
1050 to 1400	5

Table 6. Wavelength dependent correction factor C_A

MPE for point source ocular exposure to a laser beam				
Wavelength	Wavelength Exposure duration		MPE calculation	
λ (nm)	t (s)	(J·cm⁻²)	(W·cm⁻²)	<i>C</i> _A = 1.4791
	10 ⁻¹³ to 10 ⁻¹¹	$1.5 C_{\rm A} \times 10^{-8}$	-	2.2 × 10 ⁻⁸ (J·cm ⁻²)
	10 ⁻¹¹ to 10 ⁻⁹	2.7 $C_{\rm A} t^{0.75}$	-	Insert time (<i>t</i>) and calculate
785	10 ⁻⁹ to 18 × 10 ⁻⁶	5.0 $C_{\rm A} \times 10^{-7}$	-	7.40 × 10 ⁻⁷ (J·cm ⁻²)
	18 x 10 ⁻⁶ to 10	$1.8 C_{\rm A} t^{0.75} \times 10^{-3}$	-	Insert time (<i>t</i>) and calculate
	$10 \text{ to } 3 \times 10^4$	-	$C_{\rm A} \times 10^{-3}$	1.4971 × 10⁻³ (W·cm⁻²)

Table 7. MPE for ocular exposure with 785 nm laser emission

MPE: skin exposure

The ANSI Z136.1 standard provides means to perform MPE for skin exposure. Please refer to the standard to calculate the relevant MPE levels for the case of laser exposure from the Rxn-20 probe and from the unlikely occurance of laser exposure from a broken optical fiber.

MPE for skin exposure to a laser beam				
Wavelength H	Exposure duration	MPE calculation		MPE where
λ (nm)	t (s)	(J·cm⁻²)	(W·cm⁻²)	<i>C</i> _A = 1.4791
	10 ⁻⁹ to 10 ⁻⁷	$2 C_{\rm A} \times 10^{-2}$	-	2.9582 × 10 ⁻² (J·cm ⁻²)
785	10 ⁻⁷ to 10	$1.1 C_{\rm A} t^{0.25}$	-	Insert time (<i>t</i>) and calculate
	$10 \text{ to } 3 \times 10^4$	-	0.2 <i>C</i> _A	2.9582 × 10 ⁻¹ (W·cm ⁻²)

Table 8. MPE for skin exposure with 785 nm laser emission

Nominal hazard zone

The focusing optic configurations below are available for the Rxn-20 probe. Use the dimensions to calculate the nominal hazard zone.

Refer to the applicable Raman Rxn2 or Raman Rxn4 analyzer operating instructions for analyzer-specific information regarding nominal hazard zone calculations.

Laser spot size (diameter)(b ₀)	Optic focal length (f ₀)	Nominal ocular hazard distance (NOHD) equation
1 mm (0.04 in.)	35 mm (1.38 in.)	$r_{\rm NOHD} =$
1.5 mm (0.06 in.)	50 mm (1.97 in.)	$(f_0/b_0)(4\Phi/\pi MPE)^{1/2}$
3 mm (0.12 in.)	125 mm (4.93 in.)	
4.7 mm (0.19 in.)	200 mm (7.88 in.)	Φ = Laser power output in
6 mm (0.24 in.)	250 mm (9.84 in.)	watts

Table 9. Nominal hazard zone calculation

Certificates and approvals

Hazardous area approvals

The hazardous area approvals are listed below.

Туре	Description
Hazardous area approvals	ATEX The Rxn-20 probe has been third-party approved for use in hazardous areas in accordance with Article 17 of Directive 2014/34/EU of the European Parliament and of the Council dated 26 February 2014. The Rxn-20 probe has been certified to the ATEX Directive for use in Europe, as well as in other countries accepting ATEX-certified equipment.
	IECEx The Rxn-20 probe can also be marked for <u>International Electrotechnical</u> <u>Commission</u> (IEC) Certification Systems for Explosive Atmospheres when installed in accordance with the Rxn-20 Hazardous Area Installation Diagram (3000272).
	North American The Rxn-20 probe has also been approved for use in hazardous areas in the United States (US) and Canada by the <u>Canadian Standards Association</u> when installed in accordance with the Rxn-20 Hazardous Area Installation Diagram (3000272).
	The products are eligible to bear the CSA Mark with adjacent indicators 'C' and 'US' for Canada and US or with adjacent indicator 'US' for US only or without either indicator for Canada only.

Table 10. Hazardous area approvals

Certifications and markings

Endress+Hauser offers certifications for the Rxn-20 probe to the standards below. Select the desired certification(s) and the probe or probe tag is marked accordingly.

Туре	Description
ATEX marking and installations	ATEX marking is available as an option at the time of purchase. Available markings: II 2/1 G Ex ia op is IIA or IIB or IIB+H2 or IIC T3 or T4 or T6 Ga
	 Prior to the order, the marking for the particular probe/application must be determined. The customer must do one of the following: Work with purchasing to identify the required marking OR Provide Endress+Hauser with a completed copy of the Hazardous Area Equipment Assessment (4002266).
	Endress+Hauser will mark the Rxn-20 probe according to the customer's provided information. Endress+Hauser is not responsible for the customer's inaccuracies.
	WARNING In an ATEX-governed environment, only ATEX-marked probes may be used.
North American hazardous area	CSA marking is available as an option at the time of purchase. Available markings:
marking and installations	Ex ia op is IIA or IIB or IIB + H2 or IIC T3 or T4 or T6 Ga Class I, Zone 0 AEx ia op is IIA or IIB or IIB + H2 or IIC T3 or T4 or T6 Ga Class I, Division 1, Groups A, B, C, D T3/T4/T6
	 Prior to the order, the marking for the particular probe/application must be determined. The customer must do one of the following: Work with purchasing to identify the required marking OR Provide Endress+Hauser with a completed copy of the Hazardous Area Equipment Assessment (4002266).
	Endress+Hauser will mark the Rxn-20 probe according to the customer's provided information. Endress+Hauser is not responsible for the customer's inaccuracies. For North American applications into classified environments, the probe will have the CSA mark and can be considered intrinsically safe when installed according to the Rxn-20 Hazardous Area Installation Diagram (3000272).
	WARNING In a CSA-governed environment, only CSA-marked probes may be used.
IECEx hazardous area marking and installations	IECEx marking is available as an option at the time of purchase. Available markings: Ex ia op is IIA or IIB or IIB + H2 or IIC T3 or T4 or T6 Ga
	 IECEx ITS 14.0015X Prior to the order, the marking for the particular probe/application must be determined. The customer must do one of the following: Work with purchasing to identify the required marking OR Provide Endress+Hauser with a completed copy of the Hazardous Area
	Equipment Assessment (4002266). Endress+Hauser will mark the Rxn-20 probe according to the customer's provided information. Endress+Hauser is not responsible for the customer's inaccuracies.
	For IECEx applications into classified environments, the probe will have the IECEx mark and can be considered intrinsically safe when installed according to the Rxn-20 Hazardous Area Installation Diagram (3000272).
	WARNING In an IECEx-governed environment, only IECEx-marked probes may be
	used. Table 11. Certifications and markings

Table 11. Certifications and markings

Hazardous area drawing

The Rxn-20 Hazardous Area Installation Diagram is shown below.

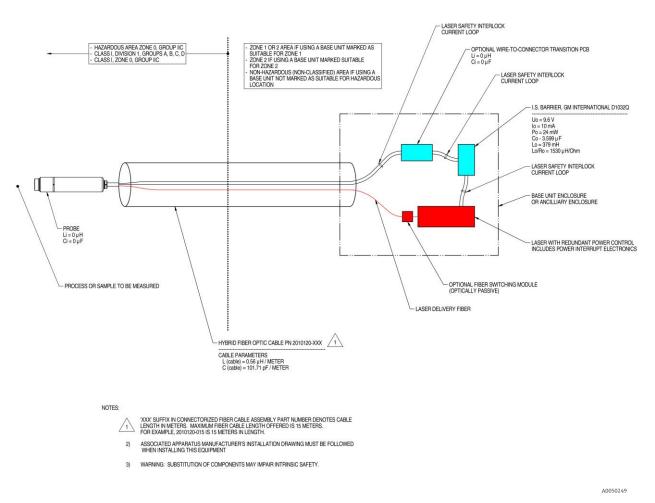


Figure 4. Rxn-20 Hazardous Area Installation Diagram (3000272 version X2)

www.addresses.endress.com

